Crystal and Molecular Structure of *trans-2,trans-3*-Dimethylcyclopropanecarboxylic Acid

By P. A. Luhan and A. T. McPhail,* Paul M. Gross Chemical Laboratory, Duke University, Durham, North Carolina 27706, U.S.A.

Single-crystal X-ray analysis of the title compound has established its constitution and molecular dimensions. Crystals are monoclinic, space group $P2_1/c$, with Z = 4, in a cell of dimensions: a = 6.39, b = 10.98, c = 9.76 Å, $\beta = 105.6^{\circ}$. The structure was solved by direct phase-determining methods and refined by full-matrix least-squares calculations to R 0.085 over 638 reflections. The crystals contain centrosymmetric hydrogen-bonded dimers with a conformation in which the C=O bond points over the cyclopropane ring.

DURING their investigations on the mechanism of cyclopropane formation from epoxides *via* the Wittig reaction, Ghirardelli and Izydore¹ obtained mixtures of isomeric 2,3-dimethoxycyclopropanecarboxylic acids, (I)—(III), from reactions involving (+)-(2R,3R)-2,3-epoxybutane and *cis*-2,3-epoxybutane. In order that an analysis of the reaction mechanism could be made, it was imperative that the identity of each isomer be established unequivocally. The constitution of (I) was inferred from its optical activity. One of the other two isomers was isolated from the product mixture as a solid, m.p. 79--80.5°, and we have subjected it to single-crystal ¹ R. G. Ghirardelli and R. A. Izydore, personal communication. X-ray analysis to determine its configuration We here report the results of this analysis.

EXPERIMENTAL

Crystal Data.—C₆H₁₀O₂, m.p. 79—80.5°, $M = 114 \cdot 1$. Monoclinic, $a = 6\cdot39(1)$, $b = 10\cdot98(2)$, $c = 9\cdot76(2)$ Å, $\beta = 105\cdot6(2)^{\circ}$, U = 660 Å³, $D_{\rm m} = 1\cdot14$, Z = 4, $D_c = 1\cdot148$, F(000) = 248. Cu- K_{α} radiation $\lambda = 1\cdot542$ Å, $\mu({\rm Cu-}K_{\alpha}) = 7\cdot1$ cm⁻¹. Space group $P2_1/c$ (C_{2h}^5) from systematic absences: 0k0 when $k \neq 2n$ and h0l when $l \neq 2n$.

Crystallographic Measurements.—The crystals have a tendency to sublime at room temperature, and so those used for the data collection were sealed in thin-walled glass capillaries. Unit-cell dimensions were evaluated from

precession photographs taken with Mo- K_{α} ($\lambda = 0.7107$ Å) radiation. Intensities were estimated visually from equiinclination multiple-film Weissenberg photographs of the layers 0-6kl taken with Cu- K_{α} radiation. Spot-shape

corrections and the usual Lorentz and polarization factors were applied, and 638 independent observed structure amplitudes were obtained. No allowance was made for absorption.

Structure Analysis .--- The structure was solved by direct phase-determining methods.² Initially, three origin-defining reflections were assigned phases, 2,2,1, |E| = 2.48, $\phi = 0; 1,3,2, |E| = 2.47, \phi = 0; 4,7,\overline{2}, |E| = 2.46, \phi = 0,$ and one further reflection 4,11, \overline{I} , |E| = 2.25 was assigned $\phi = a$. These four reflections were expanded into a set of ten reflections for which $|E_H \cdot E_K \cdot E_{H-K}| > 10.0$. By use of a local version of the iterative program of Drew³ as amended by Larson and Motherwell⁴ the tangent formula⁵ was applied to this basis set to generate the phases for other reflections. The phase a was allowed to assume values of 0 and π and the largest 120 |E| values were refined for four cycles and 200 were refined for five cycles. In any cycle a phase assignment was rejected if the consistency index, $t = \sqrt{A^2 + B^2/\Sigma_K} |E_K \cdot E_{H-K}|$ was <0.30 and the value of $\alpha = |E_H| \sqrt{A^2 + B^2}$ was <3.0. A summary of the results of the refinement are presented in Table 1, which

TABLE 1

Summary of output from tangent refinement

					No. of
				No. of	phases
a	t	α	R _K	Σ_2 values	assigned
0	0.87	58	0.04	2211	185
π	0.77	48	0.12	2029	176

shows that the set with a = 0 has a markedly lower $R_K [= \Sigma_H |E_H|_{obs} - |E_H|_{calc} | \Sigma_H |E_H|_{obs}]$ value. In the Emap computed by use of the phases derived from the set with $R_K 0.04$, all non-hydrogen atoms appeared in chemically reasonable positions. The E-map based on the other set contained no recognizable features. The approximate atomic positions derived from the E-map, all with B 3.5 Å², were used to compute structure factors for which R was 0.378. The positional and isotropic thermal parameters were then refined for seven cycles of full-matrix least-

* For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970, Issue No. 20 (items less than 10 pp. are sent as full size copies).

³ See. e.g., M. G. B. Drew, D. H. Templeton, and A. Zalkin, Acta Cryst., 1969, B, 25, 261.

squares calculations which reduced R to 0.176. Calculation of a three-dimensional difference electron-density map indicated that there was significant density at all positions calculated for the hydrogen atoms assuming C-H 1.07 and O-H 1.0 Å. The ten hydrogen atoms were included, with $B 5.0 \text{ Å}^2$ in the next eight rounds of least-squares calculations during which carbon and oxygen atomic positional and anisotropic thermal parameters were adjusted. These decreased R to 0.094. In a further three least-squares cycles the hydrogen positional and isotropic thermal parameters were varied, and the refinement converged at R 0.085.

For all the structure-factor calculations, scattering factors for neutral atoms were taken from ref. 6. The weighting scheme for the least-squares calculations was $\sqrt{w} = 1$ for $|F_0| \leq 5.5$ and $\sqrt{w} = |F_0|/5.5$ for $|F_0| > 5.5$, and $\Sigma w \Delta^2$ was minimized. At the conclusion of the refinement, analysis of $\langle w\Delta^2 \rangle$ in ranges of $|F_0|$ and $\sin \theta$ indicated the adequacy of this scheme.

Final observed and calculated structure factors are listed in Supplementary Publication No. SUP 20527 (6 pp., 1 microfiche).*

RESULTS AND DISCUSSION

This X-ray analysis defines (III) as the constitution of the acid studied, whence the third isomeric acid must have configuration (II).

IABLE 4	[ABLE 2]	
---------	----------	--

Fractional atomic co-ordinates * ($\times 10^4$) and temperature factor parameters, with estimated standard deviations in parentheses

Atom	x	y	z	$B/{ m \AA^2}$
C(1)	7185(7)	2532(4)	3385(4)	÷
C(2)	6792(8)	1445(4)	4250(5)	t
C(3)	4966(8)	2261(4)	3579(5)	t
C(4)	8401(8)	3582(4)	4091(5)	†
C(5)	7011(10)	169(5)	3738(7)	t
C(6)	3140(11)	1844(6)	2364(9)	÷
O(7)	9767(5)	4055(3)	3472(3)	†
O(8)	8134(5)	4003(3)	5217(3)	t
H(1)	749(9)	229(5)	267(5)	3(1)
H(2)	740(8)	159(4)	503(5)	2(1)
H(3)	465(9)	281(5)	417(5)	3(1)
$H(5\alpha)$	629(13)	-40(7)	421(8)	8(2)
$H(5\beta)$	628(12)	14(7)	282(7)	6(2)
$H(5\gamma)$	852(12)	1(6)	392(6)	6(2)
$H(6\alpha)$	212(13)	259(7)	156(7)	8(2)
H(6β)	170(11)	140(6)	276(7)	5(2)
$H(6\gamma)$	370(12)	139(6)	182(7)	5(2)
H(7)	1056(8)	472(4)	391(4)	2(1)
* 11		hallod adapt	alma to the	

Hydrogen atoms are labelled according to their bonded atom, and have co-ordinates $\times 10^3$.

† For these atoms anisotropic temperature factors of the form $B\sin^2\theta/\lambda^2 = b_{11}h^2 + b_{22}k^2 + b_{33}l^2 + b_{12}hk + b_{13}hl +$ $b_{23}kl$ were employed with parameters $b_{ij} \times 10^4$.

	b_{11}	b_{22}	b_{33}	b_{12}	b_{13}	b_{23}
C(1)	256(12)	77(4)	121(5)	-66(11)	152(12)	-18(7)
C(2)	327(14)	81(4)	135(5)	-76(12)	176(13)	-19(8)
C(3)	240(12)	76(4)	176(6)	-89(11)	152(13)	— 73(8)
C(4)	230(11)	71(3)	115(5)	-4(11)	107(11)	12(7)
C(5)	436(18)	78(4)	221(8)	-59(15)	220(18)	-31(10)
C(6)	332(20)	110(6)	284(11)	-84(17)	31(25)	-83(13)
O(7)	348(9)	86(3)	164(3)	-126(8)	274(8)	-48(6)
O(8)	321(9)	92(3)	132(3)	-117(8)	193(8)	-42(6)

⁴ See e.g., O. Kennard, D. L. Wampler, J. C. Coppola, W. D. S. Motherwell, D. G. Watson, and A. C. Larson, *Acta Cryst.*, 1971, B, 27, 1116.

. Karle and H. Hauptmann, Acta Cryst., 1956, 9, 635.

 ⁵ J. Karle and H. Hauptmann, Acta Crystallography, vol. III,
 ⁶ International Tables for X-Ray Crystallography, vol. III, Kynoch Press, Birmingham, 1962.

J. Karle and I. L. Karle, Acta Cryst., 1966, 21, 849.

Final atomic co-ordinates and temperature-factor parameters are in Table 2, and the molecular dimensions derived from these are in Table 3. The crystal structure

TABLE 3

Interatomic distances (Å) and angles (deg.), with estimated standard deviations in parentheses

(a) Intramolecular	distances		
$\begin{array}{c} C(1)-C(2)\\ C(1)-C(3)\\ C(1)-C(4)\\ C(2)-C(3)\\ C(2)-C(5)\\ C(3)-C(6)\\ C(4)-O(7)\\ C(4)-O(7)\\ C(4)-O(8)\\ \end{array}$	$\begin{array}{c} 1.522(7)\\ 1.510(7)\\ 1.456(6)\\ 1.478(7)\\ 1.507(7)\\ 1.495(9)\\ 1.296(6)\\ 1.246(5)\\ 3.01\\ 2.93\\ \end{array}$	$\begin{array}{c} C(1)-H(1)\\ C(2)-H(2)\\ C(3)-H(3)\\ C(5)-H(5\alpha)\\ C(5)-H(5\beta)\\ C(5)-H(5\beta)\\ C(6)-H(6\alpha)\\ C(6)-H(6\beta)\\ C(6)-H(6\beta)\\ C(6)-H(6\gamma)\\ O(7)-H(7) \end{array}$	$\begin{array}{c} 0.82(5)\\ 0.78(5)\\ 0.98(5)\\ 0.96(8)\\ 0.96(8)\\ 0.95(7)\\ 1.20(8)\\ 1.19(7)\\ 0.87(7)\\ 0.92(4)\end{array}$
$C(5) \cdots C(6)$	3.09		
(b) Valency angles			
$\begin{array}{c} C(2)-C(1)-C(3)\\ C(2)-C(1)-C(4)\\ C(3)-C(1)-C(4)\\ C(1)-C(2)-C(3)\\ C(1)-C(2)-C(5)\\ C(3)-C(2)-C(5)\\ C(3)-C(2)-C(5)\\ C(1)-C(3)-C(6)\\ C(1)-C(3)-C(6)\\ C(1)-C(3)-C(6)\\ C(1)-C(4)-O(7)\\ C(1)-C(4)-O(8)\\ O(7)-C(4)-O(8)\\ O(7)-C(4)-O(8)\\ C(2)-C(1)-H(1)\\ C(3)-C(1)-H(1)\\ C(3)-C(1)\\ C(3)-C(1)-H(1)\\ C(3)-C(1)-H(1)\\ C(3)-C(1)-H(1)\\ C(3)-C(1)-H($	$\begin{array}{c} 58 \cdot 3(3) \\ 120 \cdot 4(4) \\ 119 \cdot 8(4) \\ 60 \cdot 4(3) \\ 120 \cdot 1(4) \\ 123 \cdot 3(5) \\ 61 \cdot 2(3) \\ 121 \cdot 3(5) \\ 121 \cdot 3(5) \\ 121 \cdot 4(4) \\ 116 \cdot 0(4) \\ 122 \cdot 0(4) \\ 122 \cdot 1(4) \\ 109(4) \\ 119(4) \\ 1$	$\begin{array}{c} C(1)-C(2)-H(2)\\ C(3)-C(2)-H(2)\\ C(5)-C(2)-H(2)\\ C(1)-C(3)-H(3)\\ C(2)-C(3)-H(3)\\ C(2)-C(3)-H(3)\\ C(2)-C(5)-H(5\alpha)\\ C(2)-C(5)-H(5\beta)\\ C(2)-C(5)-H(5\gamma)\\ H(5\alpha)-C(5)-H(5\gamma)\\ H(5\alpha)-C(5)-H(5\gamma)\\ H(6\alpha)-C(6)-H(6\beta)\\ H(6\alpha)-C(6)-H(6\gamma)\\ H(6\beta)-C(6)-H(6\gamma)\\ H(6\gamma)-C(6)-H(6\gamma)\\ H(6\beta)-C(6)-H(6\gamma)\\ H(6\gamma)-C(6)-H(6\gamma)\\ H(6\beta)-C(6)-H(6\gamma)\\ H(6\gamma)-C(6)-H(6\gamma)\\ H(6\gamma)-C(6)-H(6\gamma)\\ H(6\gamma)-C(6)-H(6\gamma)\\ H(6\gamma)-C(6)-H(6\gamma)\\ H(6\gamma)-C(6)-H(6\gamma)\\ H(6\gamma)-C(6)-H(6\gamma)\\ H(6\gamma)-C(6)-H(6\gamma)\\ H(6\gamma)-C(6)-H(6\gamma)\\ H(6\gamma)\\ H(6\gamma)-C(6)-H(6\gamma)\\ H(6\gamma)\\ H(6\gamma)-C(6)-H(6\gamma)\\ H(6\gamma)\\ H(6\gamma)-C(6)-H(6\gamma)\\ H(6\gamma)\\ H(6\gamma)-C(6)-H(6\gamma)\\ H(6\gamma)\\ H(6\gamma)\\ H(6\gamma)\\ H(6\gamma)-C(6)-H(6\gamma)\\ H(6\gamma)\\ H(6\gamma)$	$\begin{array}{c} 106(4)\\ 116(4)\\ 117(4)\\ 109(4)\\ 114(4)\\ 117(4)\\ 110(5)\\ 107(5)\\ 107(5)\\ 107(4)\\ 106(7)\\ 113(6)\\ 115(6)\\ 99(5)\\ 116(6)\\ 103(6)\\ 103(6)\\ 107(6)\\ 100(6)\\ $
$C(4) = C(1) \Pi(1)$	distances < 3	·6 Å	117(3)
$O(7) \cdots O(8^{I})$	2.66	$O(7) \cdots C(6^{III})$	3.56
$C(4) \cdots O(8)$	3.40	$O(7) \cdots C(5^{V})$	3.57
$\begin{array}{c} \mathrm{O}(8) \cdots \mathrm{C}(6^{\mathrm{II}}) \\ \mathrm{C}(4) \cdots \mathrm{O}(7^{\mathrm{I}}) \end{array}$	3·45 3·50	$O(7) \cdots O(7^{I})$	3.58

Roman numeral superscripts refer to the following transformations of the co-ordinates of Table 2:

$1 \ 2 - x, 1$	-y, 1-z	III 1		$x, \frac{1}{2}$	$+ y, \frac{1}{2}$	<u>1</u> — 2
II $1 + x, \frac{1}{2}$	$-y, \frac{1}{2}+z$	IV 2	- 1	x, ½	+y,	<u>}</u> − 2

projected along the *b*-axis is shown in the Figure. In the crystal the acid molecules exist as centrosymmetric hydrogen-bonded dimers with O-H · · · O 2.65 Å. The dimers are separated from each other by normal van der Waals distances with the closest interdimer separation at 3.45 Å occurring between a carboxyl oxygen atom of the reference molecule and a methyl carbon atom of a molecule related by the *c* glide plane operation.

The cyclopropane ring dimensions accord well with those for other similar systems studied by X-ray diffraction. In cyclopropanecarbohydrazide,7 cyclopropanecarboxamide,⁸ and cyclopropane-1,1-dicarboxylic acid,⁹ the endocyclic angle at the carbon atom bearing the substituent is smaller than at the other two which are not

M. A. M. Meester, H. Schenk, and C. H. MacGillavry, Acta Cryst., 1971, B, 27, 630.

significantly different, and, correspondingly, the bond length opposite the smallest angle is the shortest. This situation holds true also in (III), for the internal angle at C(1) is 58.3° and C(2)–C(3) 1.478 Å, significantly smaller than the mean (1.516 Å) for the other ring bonds. The mean cyclopropane C-C distance (1.503 Å) is smaller than the normal length in saturated hydrocarbons¹⁰ [1.537(5)]Å], but is in excellent agreement with the corresponding mean in other crystalline simple cyclopropane derivatives studied (1.50 in cyclopropanecarbohydrazide⁷ and cyclopropanecarboxamide,⁸ 1.510 in cyclopropane-1,1dicarboxylic acid,9 and 1.507 Å in bicyclopropyl 11 at -105 °C), and only slightly shorter than the 1.518 Å in cis-1,2,3-tricyanocyclopropane.¹² The cyclopropane C-C

The crystal structure viewed in projection along the b axis. Hydrogen bonds are denoted by broken lines

length from an electron diffraction study ¹³ is 1.510 Å. There have been numerous discussions in the literature to account for the physical and chemical properties of cyclopropane and its derivatives with either the Coulson-Moffitt ¹⁴ ' bent ' bond model or Walsh's ¹⁵ π -electron model being favoured.

The dihedral angle between the planar carboxy-group and the cyclopropane ring is 85°, similar to the values of 88.0 and 88.3° in two crystallographically independent molecules of cyclopropanecarboxamide,8 88.5° in cyclopropanecarbohydrazide,⁷ and 86·2, 86·7, 87·6, and 88·6° at the carboxy-groups in two molecules of cyclopropane-1.1-dicarboxylic acid.⁹ In the carboxy-group the identity of the carbonyl oxygen atom, O(8), is consistently

¹¹ J. Eraker and C. Rømming, Acta Chem. Scand., 1967, 21,

2721.
¹² A. Hartman and F. L. Hirshfeld, Acta Cryst., 1966, 20, 80.
¹³ O. Bastiansen, F. N. Fritsch, and K. Hedberg, Acta Cryst.,

¹⁴ C. A. Coulson and W. E. Moffit, *Phil. Mag.*, 1949, 40, 1;
 C. A. Coulson and T. H. Goodwin, *J. Chem. Soc.*, 1962, 2851.
 ¹⁵ A. D. Walsh, *Trans. Faraday Soc.*, 1949, 45, 179.

⁷ D. B. Chesnut and R. E. Marsh, Acta Cryst., 1958, 11, 413. 8 R. E. Long, H. Maddox, and K. N. Trueblood, Acta Cryst., 1969, B, 25, 2083.

¹⁰ Chem. Soc. Special Publ., No. 18, 1965.

established ¹⁶ from the short C(4)-O(8) bond length, the pattern of angles around C(4), and the location of the hydroxy-hydrogen atom 0.92 Å from O(7). The carbonyl

oxygen atom lies over the cyclopropane ring, but it is not equidistant from C(2) and C(3) (Table 3). A survey of the torsion angles around the exocyclic C-C bonds in simple cyclopropane derivatives (Table 4) shows that in all of these the torsion angles are unequal and there is a significant departure from C_s symmetry. Electron diffraction patterns of cyclopropanecarbaldehyde 17 have been interpreted on the basis of about 50% population of the C_s -cis-configuration in the vapour phase.

We thank Drs. R. G. Ghirardelli and R. A. Izydore for suggesting this problem and for crystals, and the Army Research Office, Durham, for partial support of this work. All calculations were performed on the IBM 370/165 computer located at the Triangle Universities Computation Centre, Research Triangle Park, North Carolina.

[2/1678 Received, 17th July, 1972]

¹⁶ See e.g., J. D. Dunitz and P. Strickler in 'Structural Chemistry and Molecular Biology,' eds. A. Rich and N. Davidson, Freeman, San Francisco, 1968, p. 595. ¹⁷ L. S. Bartell and J. P. Guillory, J. Chem. Phys., 1965, **43**,

647.